Применение скрытых марковских моделей в системах компьютерного обучения произношению
Получите бесплатно демо-версию Демо-версия - дипломная работа, в котрой удалена часть текста, рисунков, таблиц.Посмотреть все услуги дипломной работы на электронную почту.
Введите адрес электронной почты и нажмите "Отправить" 
Программные комплексы поддержки принятия управленческих решений (учет рабочего времени сотрудников)10 680 ₽
Информационная система обслуживания заявок сотрудников строительной компании, диплом по информатике в экономике8 900 ₽
Разработка сайта салона красоты с возможностью записи клиентов7 344 ₽
Методика обеспечения защиты информации WEB-сервера от XSS атак на основе многокритериального выбора, ВКР безопасность информационных систем11 880 ₽Описание
Работа выполнена и представлена в 2016.
Современные информационные технологии могут кардинально изменить тревожную ситуацию в области коррекции и устранения речевых нарушений у детей (логопедия). Дефекты речи являются частым отклонением у детей дошкольного возраста. Если двенадцать лет назад свыше 100 тыс. детей в России посещали почти 5 тыс. специальных учреждений, то сейчас примерно у половины первоклассников есть дефекты речи, и это число постоянно растет. Очевидна проблема, требующая скорейшего решения, и оно возможно, если в помощь логопедам и родителям можно будет предложить специальные программы, помогающие изучению произношения и устраняющие уже существующие дефекты речи.
Произношение неразрывно связано с распознаванием речи, одной из самых сложных задач искусственного интеллекта. Именно поэтому, задача исследования возможностей математических моделей и методов, применяемых в системе распознавания речи, является актуальной.
Задача распознавания речи состоит в автоматическом восстановлении текста произносимых человеком слов, фраз или предложений на естественном языке. Человек для понимания устной речи задействует не только свои знания о языке, но и смысл произносимого. Каждый из нас понимает, что выражение, произнесенное с разной интонацией и в разных условиях, на уровне сигнала будет выглядеть совершенно по-разному. Но люди всё равно понимают друг друга, т.е. есть нечто неизменное, благодаря чему по сигналу можно понять, что было сказано. Поиск таких неизменных частей является задачей акустического моделирования. Акустическая модель - это функция, на вход которой подается небольшой участок акустического сигнала, и выдающая распределение вероятностей различных звуков на этом участке.
На сегодняшний день практически все известные системы распознавания речи основаны на статических методах. Обычно таким является метод, называемый скрытым марковским моделированием (СММ), так как при использовании данного метода вероятность распознавания слов очень велика (80-90%). В то же время каждый речевой сигнал может быть представлен в виде вектора, заданного в некотором параметрическом пространстве, после чего этот вектор может быть запомнен в нейросети. Модели искусственных нейронных сетей так же используются для акустико-фонетического моделирования речевого сигнала. Принципы работы таких моделей основываются на биологических моделях нервных систем.
СММ и искусственные нейронные сети (ИНС), созданные в виде компьютерных моделей, с успехом справляются с задачами распознавания. Существует так же гибридная модель ИНС и СММ, которая позволяет эффективно объединить и усилить их возможности. Для анализа самого произношения выбрана дифференцирующая модель, которая предполагает индивидуальный пошаговый контроль с объективной системой оценивания, при этом у компьютера для этого есть огромные возможности.Поэтому эти модели выбраны основными для исследования и анализа.
Характеристики
Программа с исходниками  | Да, Delphi | 
Год  | 2016 | 

Заказывал ВКР по прикладной информатике в МИСИС с выполнением за 3 недели. Работа включала разработку модуля обработки данных на Python и анализ эффективности нейросетей для прогнозирования. Соответствует требованиям кафедры, замечаний по структуре и коду было минимально. Защита прошла без правок, оценка «хорошо». Сервис оправдал ожидания по срокам и качеству.

ВКР по лингвистике для Синергии выполнен за 3 недели. Исследование особенностей перевода мемов с английского в русскоязычном сегменте соцсетей. Соответствует требованиям дистанционного формата: есть примеры скриншотов, анализ языковых адаптаций. Не было замечаний по терминологии, но потребовалась правка списка источников. Защита прошла успешно, оценка «хорошо». Рекомендую при заказе с запасом времени.

Заказал ВКР на тему «Автоматизация процессов ИТ-поддержки на предприятии». Работа выполнена за 3 недели без спешки. Тема раскрыта по методичке: анализ текущих слабых мест, предложения по улучшению, расчеты эффективности. Было небольшое замечание по оформлению таблиц, но поправили за пару дней. Защита прошла спокойно, оценка «хорошо». Для стандартного срока — результат стабильный и предсказуемый.

Решил заказать диплом на тему «Автоматизация обработки внутренних заявок сотрудников в организации». Сомневался в сроках — всего 10 дней до дедлайна. Первый черновик содержал неточности в структуре, но автор быстро внес корректировки после моих комментариев. Добавили детали по адаптации системы под разные отделы. На защите комиссия одобрила практическую часть, хотя попросила расширить рекомендации. «Хорошо» вместо «удовл.» — за такие сроки я доволен!

Заказал диплом по бизнес-информатике в МЭИ за 4 дня до дедлайна — почти не верил, что успеют. Были опасения по расчетам оптимизации ИТ-инфраструктуры и чертежам архитектуры систем в Visio. В итоге автор внес правки за сутки (пришлось доплатить), но замечания комиссии по формуле ROI устранили. Спасли перед защитой, хотя изначально сомневался в сервисе.


            
            
            
            
            
            
            
            









