Программные комплексы поддержки принятия управленческих решений (разработка программного обеспечения для распознавания изменения природных объектов с борта БПЛА)
Получите бесплатно демо-версию Демо-версия - дипломная работа, в котрой удалена часть текста, рисунков, таблиц.Посмотреть все услуги дипломной работы на электронную почту.
Введите адрес электронной почты и нажмите "Отправить"
Методика обеспечения защиты информации WEB-сервера от XSS атак на основе многокритериального выбора, ВКР безопасность информационных систем11 880 ₽
Информационная система обслуживания заявок сотрудников строительной компании, диплом по информатике в экономике8 900 ₽
Разработка интернет-магазина строительных материалов, диплом разработка интернет-магазина5 760 ₽
Разработка сайта салона красоты с возможностью записи клиентов7 344 ₽Описание
Работа подготовлена и защищена в 2017 году в Московский технологический институт, кафедра Информатики и автоматизации, Направление: Управление в технических системах, Профиль: Системы и технические средства автоматизации и управления.
Актуальность работы связана с тем, что системы распознавания образов и компьютерного зрения все чаще и чаще используются при автоматическом исследовании природных объектов с бортов беспилотных летательных аппаратов (БПЛА).
Выбор темы обоснован акутальностью применения систем технического зрения в современной промышленности.
Теоретическая значимость работы состоит в изучении методов распознавания изображений, практическая – в применении разработанного программного обеспечения в деятельности ФГБУ «Чукотское УГМС».
Системы технического зрения (СТЗ) сейчас становятся одним из основных средств развития АСУ движением в условиях, когда объём априорных данных не достаточен и для реализации задач управления нужен анализ внешней обстановки в онлайн режиме. СТЗ используются в новейших космических, наземных, подводных и надводных мобильных объектах. Хорошая дальность действия и широкий спектр пространственного и цветового разрешения сегодняшних линейных и матричных приемников оптического излучения СТЗ служат отличными источниками данных при автоматическом выполнении задач навигации, наведения или распознавания.
Важно также отметить некоторые технические трудности внедрения зрительного информационного канала в центр управления мобильными объектами. Сложности связаны с проблемами преобразования зрительных данных в данные результатов слежения, навигации или выявления параметров движения этих объектов в онлайн режиме.
Минимизация времени конвертации зрительных сигналов при большой скорости движения мобильных объектов очень сложна в реализации, и является единственным препятствием для повсеместного применения СТЗ. Сложности также связаны с синтезом алгоритмов необходимых преобразований. Нет универсального алгоритма решения задач зрительного слежения, распознавания, навигации и наведения при стандартном движении аппарата или объекта зрительного слежения. Для любой задачи СТЗ и в конкретной ситуации фотометрических и траекторных условий необходим лишь определенный алгоритм, причём даже незначительное изменение указанной зрительной сцены часто требует смены применяемого алгоритма исследования фотометрического сигнала. Это ведет к необходимости поддержания алгоритмической полноты и структурной устойчивости проведения задач технического зрения на различных фотометрических ситуациях и траекториях передвижения.
Сложная ситуация алгоритмического обеспечения СТЗ складывается и с конструктивными просчетами их технической реализации — нехватке динамических диапазонов свето- и цветопередачи, дискретностью фотоприёмников, астигматизмом канала наблюдения, погрешностями калибровочных характеристик и привязок к времени потока видеоданных. Поэтому зачастую полезность алгоритма гибнет под ударами искажений и шумов. Борьба с помехами в видеоданных становится основной алгоритмической задачей в процессе применения зрительной обратной связи в центр управления. Такой подход требует серьезного развития математических методов и алгоритмов зрительных преобразований в рамках реализации конкретных задач управления передвижными объектами.
Объектом исследования выпускной квалификационной работы является методы и способы распознавания изображений.
Предметом исследования является программная реализация методов распознавания изображений.
При написании выпускной квалификационной работы использовались научные труды следующих авторов: Кашкин В.Б. [18], Монич Ю.И. [26], Пересада В. П. [28].
Целью работы является повышение эффективности работы сотрудников компании за счет применения проекта программного обеспечения для распознавания изменения природных объектов с борта БПЛА.
Основными задачами работы являются:
- Анализ структуры изображения в цифровом виде;
- Анализ методов и алгоритмов распознавания объектов с борта БПЛА;
- Разработка алгоритмов работы программы;
- Разработка структуры программного обеспечения;
- Тестирование программного обеспечения.
Выпускная квалификационная работа состоит из введения, заключения, тех глав и приложения с листингом программных модулей, выполнена на 100 страницах, содержит 8 таблиц и 19 рисунков.
В комплект работы входит программа на языке Delphi и СУБД MS Access.
Характеристики
Год | 2017 |
Программа с исходниками | Да, Delphi |

Заказывал ВКР по прикладной информатике в МИСИС с выполнением за 3 недели. Работа включала разработку модуля обработки данных на Python и анализ эффективности нейросетей для прогнозирования. Соответствует требованиям кафедры, замечаний по структуре и коду было минимально. Защита прошла без правок, оценка «хорошо». Сервис оправдал ожидания по срокам и качеству.

ВКР по лингвистике для Синергии выполнен за 3 недели. Исследование особенностей перевода мемов с английского в русскоязычном сегменте соцсетей. Соответствует требованиям дистанционного формата: есть примеры скриншотов, анализ языковых адаптаций. Не было замечаний по терминологии, но потребовалась правка списка источников. Защита прошла успешно, оценка «хорошо». Рекомендую при заказе с запасом времени.

Заказал ВКР на тему «Автоматизация процессов ИТ-поддержки на предприятии». Работа выполнена за 3 недели без спешки. Тема раскрыта по методичке: анализ текущих слабых мест, предложения по улучшению, расчеты эффективности. Было небольшое замечание по оформлению таблиц, но поправили за пару дней. Защита прошла спокойно, оценка «хорошо». Для стандартного срока — результат стабильный и предсказуемый.

Решил заказать диплом на тему «Автоматизация обработки внутренних заявок сотрудников в организации». Сомневался в сроках — всего 10 дней до дедлайна. Первый черновик содержал неточности в структуре, но автор быстро внес корректировки после моих комментариев. Добавили детали по адаптации системы под разные отделы. На защите комиссия одобрила практическую часть, хотя попросила расширить рекомендации. «Хорошо» вместо «удовл.» — за такие сроки я доволен!

Заказал диплом по бизнес-информатике в МЭИ за 4 дня до дедлайна — почти не верил, что успеют. Были опасения по расчетам оптимизации ИТ-инфраструктуры и чертежам архитектуры систем в Visio. В итоге автор внес правки за сутки (пришлось доплатить), но замечания комиссии по формуле ROI устранили. Спасли перед защитой, хотя изначально сомневался в сервисе.














































