Разработка нейросетевого классификатора электронной почты, ВКР по прикладной информатике в экономике
Получите бесплатно демо-версию Демо-версия - дипломная работа, в котрой удалена часть текста, рисунков, таблиц.Посмотреть все услуги дипломной работы на электронную почту.
Введите адрес электронной почты и нажмите "Отправить"
Описание
Работа написана и представлена в 2018 году.
В нашем мире растущий объём информации в электронном виде так или иначе нуждается в классификации для оптимального хранения и обработки. Ручной анализ при таком объеме текстов станет мега затратным как по финансам, так и по человеко-часам. Данную проблему может решить компьютерная авто классификация, в рамках которой компьютерные комплексы справляются с большими объемами данных.
В проекте решается задача разработки ИС для автоматического разделения электронных документов. Система является неким веб-порталом для разделения документов.
Сама ВКР имеет 3 части. В первой описаны методы и алгоритмы классификации и выполнена постановка задачи на создание ИС для автоматического разделения электронных документов, а также выбраны средства разработки.
Вторая глава описывает интерфейс системы, ее структуру, в том числе созданную БД. Тут также проводится проверка новой системы и сравнение применяемых методик, а именно метода ближних соседей, его улучшенного варианта и совокупного метода ближних соседей.
Третья глава включает ЖЦ классификатора и рассчитывает цену разработки.
Разделение текстов — сортировка документов по некоторым категориям — одна их подобных задач.
Методы разделения текстовых документов основаны на стыке пары областей — машинного обучения и поиска данных. Совокупная часть этих областей —методы представления документов и оценка уровня разделения текстов, а различия только в вариантах конкретного поиска.
Главными областями использования классификации текстов становятся: фильтрация спама; разделение новостей; авторская проверка.
Объекты классификации — гипертекстовые и текстовые документы и их части — слабо структурированы различными данными. Многие алгоритмов разделения работают с формальным описанием объектов в рамках векторной модели конкретного документа [1]. В этой модели сам документ выражен вектором, а конкретная длина п, где п — сумма признаков, а г-я компонента вектора отражает вес г-го признака. Для внедрения модели представления важно изначально определить признаковое пространство, а также найти алгоритм подсчета весов. Число выбранной модели представления при конкретном алгоритме разделения и определенным эталонном тестовом наборе документов оценивают по некоторым параметрам:
Уровень разделения: базовый критерий (зависит также от алгоритма разделения);
Размер признакового пространства: при единой последовательности лучшее признаковое пространство меньшей размерности;
Размер итоговой модели разделения: при неизменной точности лучше компактные модели;
Длительность обучения и классификации: особый критерий, который зависит от описанных выше;
Понимание морфологии языка: данный показатель связан в описанными выше, в частности, понимание морфологии приводит к наиболее точным и компактным моделям разделения.
Самым явным вариантов создания признакового пространства становится методика ключевых слов [1, 2]. Признаками в данном методе станут лексемы, входящие в документы, а размерность пространства признаков будет равной размерности словаря. Но такой метод, к примеру, включает морфологию языка, а также некоторые связи между словами. Поддержку морфологии обычно реализуют при помощи стемминга [2], базирующегося на приведении слов к их исходной словоформе. Но в этом случае для любого языка требуется морфологический анализатор, что приводит к повышенной вычислительной нагрузке, а также рождает задачу нахождения языка документа в случае его отсутствия, и важно понимать, что для части языков создание морфологического анализатора очень непростая задача.
В данной ВКР создана ИС, которая помогает классифицировать электронные документы с применением 3 методов классификации; методики ближнего соседа, его обновленного варианта и совокупного метода ближайших соседей.
Сам проекта помимо пояснительной записки содержит программу на PHP и СУБД MySQL.
Характеристики
Файлы схем | да |
Год | 2018 |
Программа с исходниками | да, php |
Я обратился в эту компанию, чтобы заказать дипломную работу по программированию, поскольку их специализация связана с выполнением студенческих проектов в области информационных технологий. Во время сотрудничества я убедился, что автор — опытный и надёжный специалист, который ответственно подходит к своим обязанностям перед заказчиками. Я остался полностью удовлетворён результатом, и защита прошла успешно.
Обратилась в данную компанию по рекомендациям друзей, так как они получали высокие оценки и сама предоставленная работа была неполохого качества. Ну и собственно говоря не пожалела. Не скажу что я сама не могла бы написать дипломную работу, но в связи с выпуском, навалилось много дел, по работе, и дипломная работа очень ответственная часть жизни и я бы не смогла пройти если бы сдала черти что, хоть какую работу, как это бывает с рефератами обычно. Прошла антиплагиат, а это самое главное, спасибо ребятам.
Заказывала в этой компании дипломную работу по проектированию информационной системы. Осталась довольна результатом. Порадовала оперативная обратная связь: на все вопросы отвечали быстро и по делу. Все правки по замечаниям руководителя внесли бесплатно и в кратчайшие сроки, что очень важно в горячую пору защиты. Ну и вишенкой на торте стала бесплатная рецензия к диплому, которую не пришлось заказывать отдельно.
Коротко о главном!
Хочу сказать что очень благодарна за то понимание с которым относились по написанию к моей дипломной работе.
Со мной на связи и в переписке были круглосуточно- исправления делали без задержек.
Спасибо что Вы есть!!! ?
Никогда не думала, что буду обращаться к кому-то за написанием дипломной работы, но в связи с очень высокими требованиями научного руководителя решила на свой страх и риск обратиться сюда. Спасибо данной компании за мои восстановленные нервы и ментальное здоровье. Всегда на связи, понравилось, что все правки, которые возникали у научного-все вносилось и причем без доплаты, вопросов. Вошли в положение и написали все достаточно быстро, причем учли то, что ранее я сама уже написала. За цену отдельный лайк.