Корзина (0)---------

Корзина

Ваша корзина пуста

Корзина (0)---------

Корзина

Ваша корзина пуста

Алгоритмы кластеризации неориентированных графов большой размерности и их программные реализации

-45%
 Алгоритмы кластеризации неориентированных графов большой размерности и их программные реализации

Получите бесплатно демо-версию
Демо-версия - дипломная работа, в котрой удалена часть текста, рисунков, таблиц.Посмотреть все услуги
дипломной работы на электронную почту.
Введите адрес электронной почты и нажмите "Отправить"

Заказать демо-версию:
Email
Отправляя эту форму, я принимаюусловия конфиденциальности.
Скачать план работы в формате PDF
Работа подготовлена и защищена в 2017 году. Кластеризация неформально определяется как процесс организации объектов в группы по типичным признакам. Есть 2 главных метода кластеризации: декомпозиция (деление, k-кластеризация) - тут каждый объект связан только с единственной группой, иерархическая кластеризация - тут каждая группа большего размера включает в себя группы меньшего размера. Оба метода очень часто изучались в середине 70-х годов и немного в 80-х. Сегодня в связи с распространением WWW поисковых систем (и особенно вопросов реализации огромных кол-ва информации) и концепцией 'информационная проходка’ (способ анализа данных в БД для нахождения аномалий и трендов без определения смыслового значения записей) вновь появился интерес к алгоритмам кластеризации. В последние годы много работ было посвящено сравнению алгоритмов кластеризации на графах. В статье [3] обсуждается множество подходов, которые классифицированы по нескольким группам. Также в этой работе можно найти большое число реальных графов, на которых тестируются алгоритмы. Кроме того, некоторое внимание уделено метрикам качества. Экспериментальное сравнение передовых алгоритмов кластеризации на больших наборах данных было сделано в обзоре.
Скидка 45% на все
До конца акции осталось:
Год:
2017
Программа с исходниками:
да, С++
Наши гарантии
Покупается впервые!
Все непокупавшиеся работы
Дополнительные услуги:
Готова к отправке
Артикул: 84105
11 880
6 534
Экономия - 5 346
Есть вопрос? Свяжитесь с нами:
В избранное К сравнению
Описание
Характеристики
Отзывы (631)

Описание

Не нашли подходящую работу?Оцените стоимость ее написания!

Работа подготовлена и защищена в 2017 году.

Кластеризация неформально определяется как процесс организации объектов в группы по типичным признакам. Есть 2 главных метода кластеризации: декомпозиция (деление, k-кластеризация) - тут каждый объект связан только с единственной группой, иерархическая кластеризация - тут каждая группа большего размера включает в себя группы меньшего размера. Оба метода очень часто изучались в середине 70-х годов и немного в 80-х. Сегодня в связи с распространением WWW поисковых систем (и особенно вопросов реализации огромных кол-ва информации) и концепцией 'информационная проходка’ (способ анализа данных в БД для нахождения аномалий и трендов без определения смыслового значения записей) вновь появился интерес к алгоритмам кластеризации.

В последние годы много работ было посвящено сравнению алгоритмов кластеризации на графах. В статье [3] обсуждается множество подходов, которые классифицированы по нескольким группам. Также в этой работе можно найти большое число реальных графов, на которых тестируются алгоритмы. Кроме того, некоторое внимание уделено метрикам качества. Экспериментальное сравнение передовых алгоритмов кластеризации на больших наборах данных было сделано в обзоре.

Особое внимание уделяется методам оценки качества кластеризации. Так, в работе [19] исследуются метрики, основанные на знании истинной кластеризации, и предлагается их объединение в группы, исходя из их физического смысла. Анализ метрик качества и отличия в их поведении в различных ситуациях также отмечены в статье. Также важно иметь представление о задачах, на которых проверяются алгоритмы и делаются выводы о их состоятельности. Помимо множества реальных данных, на которых принято тестировать алгоритмы, в статье [7] предлагаются сгенерированные графы, позволяющие качественно оценить работу алгоритмов.

Цель проекта – реализация сравнительного анализа алгоритмов кластеризации информационного графа параллельной программы.

Совместно с написанной текстовой частью в комплекте также есть программное обеспечение на языке C++.

Характеристики

Год
2017
Программа с исходниками
да, С++
2 мая 2025 20:14

Заказал диплом по программированию – и он оказался просто идеальным! Преподаватель похвалил чистый код с подробными комментариями, а антиплагиат был выше 90%. Ещё и презентацию с докладом сделали в подарок – просто сказка!

28 апреля 2025 03:46

Заказал диплом по проектированию ЛВС – работа просто огонь! Преподаватель был в восторге, а антиплагиат показал 90%. Ещё и презентацию с докладом включили бесплатно – мечта, а не компания!

27 апреля 2025 17:44

Дипломная по прикладной информатике в экономике выполнена на отлично: использовали актуальные технологии, а все правки вносили быстро и без лишних оплат. Администрация всегда на связи – приятно работать с надёжными людьми.

25 апреля 2025 16:27

Очень переживал за диплом по защите информации, но компания превзошла ожидания! Работа прошла проверку с первого раза, а бесплатная рецензия стала приятным бонусом. Спасибо за поддержку и чуткость!

24 апреля 2025 03:30

Очень качественная дипломная работа по прикладной информатике в экономике. Код был хорошо прокомментирован, разобрался без проблем. Администрация всегда оперативно решала вопросы – приятно иметь дело с профессионалами.

Все отзывы
С этим товаром также покупают
Рекомендуем посмотреть
0Избранное
товар в избранных
0Сравнение
товар в сравнении
0Просмотренные
0Корзина
товар в корзине
Мы используем файлы cookie, чтобы сайт был лучше для вас.