Корзина (0)---------

Корзина

Ваша корзина пуста

Корзина (0)---------

Корзина

Ваша корзина пуста

Алгоритмы кластеризации неориентированных графов большой размерности и их программные реализации

-55%
 Алгоритмы кластеризации неориентированных графов большой размерности и их программные реализации

Получите бесплатно демо-версию
Демо-версия - дипломная работа, в котрой удалена часть текста, рисунков, таблиц.Посмотреть все услуги
дипломной работы на электронную почту.
Введите адрес электронной почты и нажмите "Отправить"

Заказать демо-версию:
Email
Отправляя эту форму, я принимаюусловия конфиденциальности.
Скачать план работы в формате PDF
Работа подготовлена и защищена в 2017 году. Кластеризация неформально определяется как процесс организации объектов в группы по типичным признакам. Есть 2 главных метода кластеризации: декомпозиция (деление, k-кластеризация) - тут каждый объект связан только с единственной группой, иерархическая кластеризация - тут каждая группа большего размера включает в себя группы меньшего размера. Оба метода очень часто изучались в середине 70-х годов и немного в 80-х. Сегодня в связи с распространением WWW поисковых систем (и особенно вопросов реализации огромных кол-ва информации) и концепцией 'информационная проходка’ (способ анализа данных в БД для нахождения аномалий и трендов без определения смыслового значения записей) вновь появился интерес к алгоритмам кластеризации. В последние годы много работ было посвящено сравнению алгоритмов кластеризации на графах. В статье [3] обсуждается множество подходов, которые классифицированы по нескольким группам. Также в этой работе можно найти большое число реальных графов, на которых тестируются алгоритмы. Кроме того, некоторое внимание уделено метрикам качества. Экспериментальное сравнение передовых алгоритмов кластеризации на больших наборах данных было сделано в обзоре.
минус 55% на все работы
До конца акции осталось:
Год:
2017
Программа с исходниками:
да, С++
Наши гарантии
Покупается впервые!
Все непокупавшиеся работы
Дополнительные услуги:
Готова к отправке
Артикул: 84105
11 880
5 346
Экономия - 6 534
Нужна уникальная работа с гарантией? напишите нам!
В избранное К сравнению
Описание
Характеристики
Отзывы (699)

Описание

Не нашли подходящую работу?Оцените стоимость ее написания!

Работа подготовлена и защищена в 2017 году.

Кластеризация неформально определяется как процесс организации объектов в группы по типичным признакам. Есть 2 главных метода кластеризации: декомпозиция (деление, k-кластеризация) - тут каждый объект связан только с единственной группой, иерархическая кластеризация - тут каждая группа большего размера включает в себя группы меньшего размера. Оба метода очень часто изучались в середине 70-х годов и немного в 80-х. Сегодня в связи с распространением WWW поисковых систем (и особенно вопросов реализации огромных кол-ва информации) и концепцией 'информационная проходка’ (способ анализа данных в БД для нахождения аномалий и трендов без определения смыслового значения записей) вновь появился интерес к алгоритмам кластеризации.

В последние годы много работ было посвящено сравнению алгоритмов кластеризации на графах. В статье [3] обсуждается множество подходов, которые классифицированы по нескольким группам. Также в этой работе можно найти большое число реальных графов, на которых тестируются алгоритмы. Кроме того, некоторое внимание уделено метрикам качества. Экспериментальное сравнение передовых алгоритмов кластеризации на больших наборах данных было сделано в обзоре.

Особое внимание уделяется методам оценки качества кластеризации. Так, в работе [19] исследуются метрики, основанные на знании истинной кластеризации, и предлагается их объединение в группы, исходя из их физического смысла. Анализ метрик качества и отличия в их поведении в различных ситуациях также отмечены в статье. Также важно иметь представление о задачах, на которых проверяются алгоритмы и делаются выводы о их состоятельности. Помимо множества реальных данных, на которых принято тестировать алгоритмы, в статье [7] предлагаются сгенерированные графы, позволяющие качественно оценить работу алгоритмов.

Цель проекта – реализация сравнительного анализа алгоритмов кластеризации информационного графа параллельной программы.

Совместно с написанной текстовой частью в комплекте также есть программное обеспечение на языке C++.

Характеристики

Год
2017
Программа с исходниками
да, С++
9 октября 2025 13:22

Я в полном восторге! Заказала здесь диплом по психологии (тема была очень узкая, связанная с тревожностью у студентов) для МУ им. Витте. Сомневалась до последнего. Автор сработал блестяще! Не просто собрал теорию, а грамотно составил программу эмпирического исследования, предложил релевантные методики. Работа была глубокой и действительно научной. При защите комиссия отметила практическую значимость и качественный анализ данных. Рекомендую всем студентам-психологам, кто хочет сэкономить нервы и время!

8 октября 2025 07:39

Обратился в компанию для разработки выпускной квалификационной работы по бизнес-информатике. ВУЗ — МИРЭА, тема касалась анализа ИТ-инфраструктуры и предложений по ее оптимизации. Работу выполнили в оговоренные сроки. Текст был структурирован, содержал не только теоретическую часть, но и грамотно проработанный аналитический раздел с расчетами. Все требования вуза (включая оформление) были соблюдены. Внес пару правок по практической главе — исполнитель отреагировал оперативно. Работа защищена на хорошо. В целом, услуга соответствует заявленной стоимости. Рекомендую.

6 октября 2025 14:42

Работа была сложная, на стыке нескольких областей. Требовалось не просто описать технологию, а спроектировать архитектуру решения и разработать план его внедрения с расчетом экономической эффективности. Меня привлекло то, что со мной работал не один автор, а команда (куратор, технический специалист по блокчейну и экономист). Результат превзошел ожидания: был предоставлен детальный технический проект, написанный с использованием профессиональной нотации (UML), проведен SWOT-анализ внедрения и рассчитан срок окупаемости. Для защиты подготовили яркую презентацию и тезисы. Работа получила высокую оценку за комплексный подход.

6 октября 2025 04:19

Тема про аудит безопасности. Всё четко, по делу, без воды. Спасибо.

6 октября 2025 03:49

Сроки поджимали, до защиты оставалось меньше месяца. Обратился сюда как в последнюю инстанцию. Менеджер сразу предупредил о возможной доплате за срочность, но подключил самого опытного автора по 1С. Коммуникация была на высоте: автор выходил на связь в любое время суток, согласовывал каждый раздел. Работа была выполнена за 3 недели. Она включала не только теорию по ERP-системам, но и детальное описание конфигурации под конкретный бизнес-кейс, что было ключевым требованием в «Синергии». Несмотря на спешку, оформление было идеальным. Сдал без проблем, спасибо за ответственность.

Все отзывы
С этим товаром также покупают
Рекомендуем посмотреть
0Избранное
товар в избранных
0Сравнение
товар в сравнении
0Просмотренные
0Корзина
товар в корзине
Мы используем файлы cookie, чтобы сайт был лучше для вас.