Сегодня скидка на заказ ВКР 25%. Пишите в ТГ @Diplomit
Корзина (0)---------

Корзина

Ваша корзина пуста

Корзина (0)---------

Корзина

Ваша корзина пуста

Разработка ИС для краткосрочного прогнозирования погоды с использованием нейросетевых алгоритмов

-65%
 Разработка ИС для краткосрочного прогнозирования погоды с использованием нейросетевых алгоритмов

Получите бесплатно демо-версию
Демо-версия - дипломная работа, в котрой удалена часть текста, рисунков, таблиц.Посмотреть все услуги
дипломной работы на электронную почту.
Введите адрес электронной почты и нажмите "Отправить"

Заказать демо-версию:
Email
Отправляя эту форму, я принимаюусловия конфиденциальности.
Скачать план работы в формате PDF
Работа выполнена и представлена в 2018 году. Успехи в расчете погоды и климата сопряжены с достижениями в области создания систем наблюд...аилучший результат при обучении многослойной нейронной сети. Проект включает в себя готовое программное обеспечение на PHP и СУБД MySQL.
Cкидка 65% на все работы
До конца акции осталось:
Файлы схем:
да
Год:
2018
Программа с исходниками:
да, php
Наши гарантии
Покупается впервые!
Все непокупавшиеся работы
Дополнительные услуги:
Готова к отправке
Артикул: 92215
10 800
3 780
Экономия - 7 020
Нужна уникальная работа с гарантией? напишите нам!
В избранное К сравнению
Описание
Характеристики
Отзывы (803)

Описание

Не нашли подходящую работу?Оцените стоимость ее написания!

Работа выполнена и представлена в 2018 году.

Успехи в расчете погоды и климата сопряжены с достижениями в области создания систем наблюдения, моделей прохождения атмосферы и океана, а также ИТ обработки огромных потоков данных.

В задачах прогнозирования (от часов до недели) основную роль играют начальные данные, пространственное нахождение модели и корректный параметрический учёт подсеточных неадиабатических процессов. Корректность прогнозов на большие сроки зависит от возможности сопряжённых моделей океана и атмосферы описать изменения температуры океана, влажности почвы и снежного покрова. Все модели современного климата направлены на изучение реакции систем климата на воздействия природного и неприродного происхождения.

Имеющиеся системы прогноза развиваются посредством технологий прогноза погоды, включая ансамблевый прогноз, к полноценной закрытым системам прогнозирования поведения среды, заключая в себе атмосферу, сушу, океан, эко сферу и другие характеристики, такие как концентрации газов, аэрозолей и примесей. Подобные внедренные прогностические системы не имеют ограничений между временными масштабами, дисциплинами средами. Они могут на совокупной технологической основе обрабатывать данные, проводить прогнозы на временных масштабах от десятков минут до десятков лет, оценить риски разных опасных природных явлений: наводнений, штормов, оползней и т.д.

В настоящее время повышение эффективности прогнозирования метеорологических условий остаётся актуальной задачей для науки. Данные о погоде и прогнозирование имеют существенное значение в ряде отраслей: экономика, авиация, строительство, сельское хозяйство и др., так как планирование и проведение различных видов мероприятий и работ во многом зависит от погодных условий.

Для создания нейронной сети необходимо собрать данные для обучающей выборки. В качестве входных значений будут выступать ряд показателей, которые влияют на погоду: температура воздуха, влажность, атмосферное давление и ветер. Выходным параметром будет прогноз погоды.

В качестве алгоритма для обучения нейронной сети был выбран метод обратного распространения ошибки. Суть данного метода заключается в распространении сигналов ошибки от выходов сети к её входам в направлении, обратном прямому распространению сигналов в обычном режиме работы [2].

Для возможности прогнозирования погоды в среде Matlab была написана программная реализация многослойной нейронной сети методом обратного распространения ошибки, со следующими параметрами обучения: шаг обучения а=0.042; среднеквадратичная ошибка Em = 0,53; весовые коэффициенты и пороговые значения инициализируются случайным образом; количество входных нейронов равно 5; количество скрытых нейронов равно 50. Данные параметры обучения показали наилучший результат при обучении многослойной нейронной сети.

Проект включает в себя готовое программное обеспечение на PHP и СУБД MySQL.

Характеристики

Файлы схем
да
Год
2018
Программа с исходниками
да, php
16 февраля 2026 14:09

Огромное спасибо хочу сказать вашей компании, это просто отличный вариант для тех кому хочется быстрой обратной связи, написания ВКР под ключ, ответы на вопросы от комиссии и даже если хотите чтобы вам помогали в режиме онлайн при сдаче. Тогда вам точно нужно обратиться в эту компанию. Я честно говоря даже и не ожидал что мне так помогут. Если в процентном соотношении на работу я потратил времени 0.5% а ребята 1000%. Ребята с самого начала были ответственны, давали быстро обратную связь, отвечали на вопросы, скидывали все документы, работу научруководителю я даже в этом мало учавствовал. Ещё раз огромное вам спасибо, буду в дальнейшем обращаться только к вам и советовать только вас.

2 февраля 2026 21:45

Спасибо за помощь! Заказывала диплом по цифровой экономике (Синергия) в самый разгар сессии. Менеджер помог сформулировать ТЗ, хотя я сама толком не знала, чего хочу. В итоге работа по внедрению ERP-системы на малом предприятии получилась структурированной и полезной. Защитила на «отлично». Очень благодарна за терпение и профессионализм!

31 января 2026 20:56

Синергия, психология. Тема про тревожность у студентов-дистанционщиков. Очень переживала, так как тема деликатная. Но автор подошел профессионально: корректные методики, этичные выводы, хорошая стилистика. Уникальность изначально была 87%. Прислали раньше срока. На защите работу привели как пример хорошей структуры. Я рада!

30 января 2026 11:48

Диплом по прикладной информатике для МТИ на тему анализа данных соцсетей. Сделали все качественно: парсинг, кластеризация, визуализация в Tableau. Особо хочу отметить доклад для защиты — он был написан так, что я сам глубоко вник в тему. Защита прошла гладко, поставили «отлично». Сервис на высоте, особенно для технических специальностей.

29 января 2026 20:23

Заказывал для МИРЭА (прикладная информатика) диплом по разработке чат-бота с NLP. Сначала попался автор, который слабо разбирался в лингвистических процессорах. После моей жалобы оперативно заменили на другого специалиста. Второй сделал блестяще, с примерами кода на Python. Не сразу, но проблема была решена. Защитил на «хорошо». Вывод: если что-то не так — сразу заявляйте, реагируют адекватно.

Все отзывы
С этим товаром также покупают
Рекомендуем посмотреть
0Избранное
товар в избранных
0Сравнение
товар в сравнении
0Просмотренные
0Корзина
товар в корзине
Мы используем файлы cookie, чтобы сайт был лучше для вас.