Применение скрытых марковских моделей в системах компьютерного обучения произношению
Получите бесплатно демо-версию Демо-версия - дипломная работа, в котрой удалена часть текста, рисунков, таблиц.Посмотреть все услуги дипломной работы на электронную почту.
Введите адрес электронной почты и нажмите "Отправить"
Описание
Работа выполнена и представлена в 2016.
Современные информационные технологии могут кардинально изменить тревожную ситуацию в области коррекции и устранения речевых нарушений у детей (логопедия). Дефекты речи являются частым отклонением у детей дошкольного возраста. Если двенадцать лет назад свыше 100 тыс. детей в России посещали почти 5 тыс. специальных учреждений, то сейчас примерно у половины первоклассников есть дефекты речи, и это число постоянно растет. Очевидна проблема, требующая скорейшего решения, и оно возможно, если в помощь логопедам и родителям можно будет предложить специальные программы, помогающие изучению произношения и устраняющие уже существующие дефекты речи.
Произношение неразрывно связано с распознаванием речи, одной из самых сложных задач искусственного интеллекта. Именно поэтому, задача исследования возможностей математических моделей и методов, применяемых в системе распознавания речи, является актуальной.
Задача распознавания речи состоит в автоматическом восстановлении текста произносимых человеком слов, фраз или предложений на естественном языке. Человек для понимания устной речи задействует не только свои знания о языке, но и смысл произносимого. Каждый из нас понимает, что выражение, произнесенное с разной интонацией и в разных условиях, на уровне сигнала будет выглядеть совершенно по-разному. Но люди всё равно понимают друг друга, т.е. есть нечто неизменное, благодаря чему по сигналу можно понять, что было сказано. Поиск таких неизменных частей является задачей акустического моделирования. Акустическая модель - это функция, на вход которой подается небольшой участок акустического сигнала, и выдающая распределение вероятностей различных звуков на этом участке.
На сегодняшний день практически все известные системы распознавания речи основаны на статических методах. Обычно таким является метод, называемый скрытым марковским моделированием (СММ), так как при использовании данного метода вероятность распознавания слов очень велика (80-90%). В то же время каждый речевой сигнал может быть представлен в виде вектора, заданного в некотором параметрическом пространстве, после чего этот вектор может быть запомнен в нейросети. Модели искусственных нейронных сетей так же используются для акустико-фонетического моделирования речевого сигнала. Принципы работы таких моделей основываются на биологических моделях нервных систем.
СММ и искусственные нейронные сети (ИНС), созданные в виде компьютерных моделей, с успехом справляются с задачами распознавания. Существует так же гибридная модель ИНС и СММ, которая позволяет эффективно объединить и усилить их возможности. Для анализа самого произношения выбрана дифференцирующая модель, которая предполагает индивидуальный пошаговый контроль с объективной системой оценивания, при этом у компьютера для этого есть огромные возможности.Поэтому эти модели выбраны основными для исследования и анализа.
Характеристики
Программа с исходниками | Да, Delphi |
Год | 2016 |
Коротко о главном!
Хочу сказать что очень благодарна за то понимание с которым относились по написанию к моей дипломной работе.
Со мной на связи и в переписке были круглосуточно- исправления делали без задержек.
Спасибо что Вы есть!!! ?
Никогда не думала, что буду обращаться к кому-то за написанием дипломной работы, но в связи с очень высокими требованиями научного руководителя решила на свой страх и риск обратиться сюда. Спасибо данной компании за мои восстановленные нервы и ментальное здоровье. Всегда на связи, понравилось, что все правки, которые возникали у научного-все вносилось и причем без доплаты, вопросов. Вошли в положение и написали все достаточно быстро, причем учли то, что ранее я сама уже написала. За цену отдельный лайк.
Отличный сервис, буквально выручил меня! Как-то туго у меня учеба шла в этом году, дипломную сам написать не смог. Обратился сюда, рассказал, что нужно сделать. В итоге, получил отличный балл! Большое вам спасибо, что выручили в сложной ситуации. Кстати, взяли совсем немного, особенно, если учитывать, как хорошо сделали мою работу, определенно рекомендую.
Из-за высокой загруженности не успевал написать дипломную по программированию самостоятельно, поэтому обратился в эту компанию. Ребята очень отзывчивые, договорились обо всём быстро. Антиплагиат прошел без проблем, однако пришлось столкнуться с такой проблемкой, как небольшие замечания от руководителя, но с этим решили тоже быстро, внесли коррективы, причем без доплат, и все остались довольны.
Во-первых, сразу же оценила, что на мои письма быстро отвечают, а не морозятся, заставляя понервничать, а во-вторых, с самой работой справились на все 5, как и оценил преподаватель) Даже исправлять ничего не пришлось, чему я была приятно удивлена. Со всеми бы так проходило сотрудничество)